662P Proceedings of the

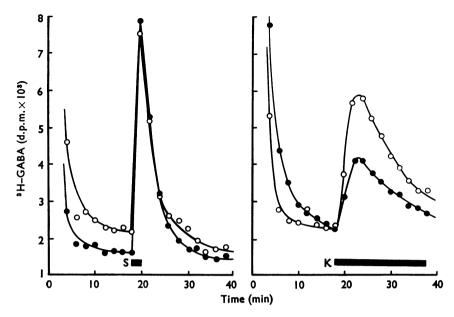


FIG. 1. Effect of electrical stimulation (S) and high potassium (K) on the efflux of ³H-GABA from brain slices in normal (○) and in calcium-free (●) medium. Each point is the mean of seven results.

REFERENCES

IVERSEN, L. L. & NEAL, M. J. (1968). The uptake of ³H-γ-aminobutyric acid by rat cerebral cortex. J. Neurochem., in the Press.

JASPER, H. M., KHAN, R. T. & ELLIOTT, K. A. C. (1966). Amino acids released from the cerebral cortex in relation to its state of activation. Science, N.Y., 147, 1448-1449.

Krnjević, K. & Schwartz, S. (1967). The action of γ-aminobutyric acid on cortical neurones. Expl Brain Res., 3, 320-336.

5-hydroxytryptamine and 5-hydroxyindoleacetic acid in rat brain: effect of some psychotropic drugs and of electrical stimulation of various forebrain areas

E. GIACALONE and W. KOSTOWSKI*†, Mario Negri Institute for Pharmacological Research, Milan, Italy

In chronically implanted, unrestrained rats the following centres were stimulated: dorsal hippocampus, frontal and piriform cortex, striatum (putamen-caudatus), anterior hypothalamus and medial thalamus. 5-Hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were determined in ipsilateral and contralateral parts of forebrain as well as in the brain stem. An increase of 5-HIAA concentration was observed after stimulation but 5-HT remained unchanged or even slightly decreased. The most marked increase of 5-HIAA occurred in both parts of forebrain and to a lesser extent in brain stem after stimulation of dorsal hippocampus.

During stimulation, inhibition of motor activity, tremor, upright posture and salivation were observed. Chlorpromazine completely blocked the increase of forebrain 5-HIAA as well as the behavioural effects induced by stimulation of the dorsal hippocampus (see Table 1).

TABLE 1 Content in brain $(\mu g/g)$

	Experimental conditions						
No.		5-HIAA			5-HT		
of expts.		Ā	В	C	A	В	$\overline{\mathbf{c}}$
12	Sham-operated non-stimulated saline	0·269 ±0·01	0·292 ±0·01	0·488 ±0·03	0·318 ±0·02	0·345 ±0·02	0·496 ±0·05
6	Stimulation of dorsal hippocampus saline	0·494* ±0·03 (+84%) (0·471* ±0·03 (+61%)	0·734* ±0·07 (+50%)	0·370 ±0·03	0·392 ±0·04	0·525 ±0·07
6	Sham-operated treatment with CPZ non-stimulated	0·366† ±0·03‡ (+36%)	0·355† ±0·03‡ (+21%)		0·382 ±0·02	0·363 ±0·01	0·608 ±0·06
5	Treated with CPZ stimulation of dorsal hippocampus	0·367† ±0·03‡	0·380† ±0·02‡	0·747* ±0·06	0·314 ±0·02	0·372 ±0·04	0·571 ±0·06

Female Sprague Dawley rats (200-220 g) were chronically implanted under ether anaesthesia with steel wire bipolar electrodes of 0·2 mm diameter by use of a sterotaxic apparatus and an atlas of brain (Köning & Klippel, 1963). Rats were stimulated 12-14 days after surgery (10 c/s, 0·5 msec, 5-6 V for 60 min). Immediately after stimulation brains were rapidly frozen and cut precollicularly (posterior to hypothalamus) into three parts—ipsilateral and contralateral half of forebrain and stem. 5-HT and 5-HIAA were estimated in the same sample by using the method of Giacalone & Valzelli (to be published). Chlorpromazine (5 mg/kg intraperitoneally) was given 30 min before stimulation.

A, Ipsilateral part of forebrain; B, contralateral part of forebrain; C, brain stem.

This study was supported by U.S. Department of Army through its European Research Office (Contract DAJA 37-67-C-0586).

† Visiting scientist from the Department of Experimental Pharmacology, Medical Academy, Warsaw, Poland.

REFERENCE

KÖNING, G. & KLIPPEL, R. (1963). The rat brain. A sterotaxic atlas of the forebrain and lower parts of the brain stem. Baltimore, U.S.A.: Williams and Wilkins Co.

Brain monoamines and adrenocortical activation

A. F. DE SCHAEPDRYVER*, P. PREZIOSI and U. SCAPAGNINI, Heymans Institute of Pharmacology, University of Ghent, Belgium, and Second Department of Pharmacology, University of Naples, Italy

Previous observations (Preziosi, Scapagnini & Nisticò, 1968) have shown that substances which deplete brain 5-hydroxytryptamine (5-HT) such as p-chlorophenylalanine, prenylamine, and α -methyl-dopa do not provoke an adrenocortical activation at doses which are known to decrease brain 5-HT content. This study deals with the effects of prenylamine (as gluconate, 100 mg/kg 0.1% aqueous solution, subcutaneously), of a monoamine oxidase-inhibitor, nialamide (50 mg/kg 0.5% aqueous solution, intramuscularly), and of restraint stress both in normal and in nialamide-treated rats, on the brain amine content and blood corticosterone levels in normal adult rats (120–150 g).

Brain tissue was homogenized with 0.4 N perchloric acid, 20 ml./g of tissue. Noradrenaline (NA) and dopamine (DA) were extracted by the method of Laverty, Sharman & Vogt (1965) and adsorbed on a Dowex 50 $W \times 4$ column. Noradrenaline was eluted with 0.4 N HCl and DA with 2 N HCl. Noradrenaline was deter-

^{*} P < 0.01 (related to sham operated, unstimulated, untreated animals). † P < 0.05 (related to sham operated, unstimulated, untreated animals).

P < 0.05 (related to stimulated, untreated animals).